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The propagation of a multicomponent mixture in a channel is considered. An equation 
generalizing the well-known Taylor equation [i] both to the multicomponent case and 
so as to take account of the dependence of the transport coefficients on the concen- 
trations of the components is obtained. 
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In analyzing numerous problems associated with liquid flow in channels, the model of im- 
purity dispersion is widely used. The basic advantage of this model is the significant sim- 
plification of the mass- and heat-transfer equations - more precisely, the replacement of a 
three-dimensional equation containing a convective term which depends on the coordinate 
transverse to the flow by a two-dimensional equation (averaged over this coordinate) which 
contains only constant coefficients in the simplest cases. This transformation was first 
undertaken in [i]. Subsequent intensive research in this area led to the proposal of several 
original approaches to the refinement and development of the theory for more complex situa- 
tions; see [2-7], for example. 

In [1-7] and elsewhere, only one equation of convective diffusion was considered, whereas 
problems in which the mixture contains several components or the influence of thermodiffusion 
and other effects must be taken into account are not uncommon in practice. An example here 
is the problem of liquid capillary chromatography, in which the action of thermodiffusion on 
mass dispersion processes in investigated [8]. In [8], however, the temperature profile was 
known in advance, i.e., no account was taken of the influence of variation in concentration 
gradients of the material on the heat transfer, as is required by the thermodynamic equations 
of irreversible processes and, in particular, the Onsager reciprocity principle [9]. Thus, 
in [8], again, one equation for the concentration of the material was essentially dealt with. 

Generalization of the model of [i] to the multicomponent case was considered in [i0], 
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the problem may be written in matrix form as follows 

at + ~ - -  g~ oc  ( I )  
ax ay ~ ~ ' 

where all the quantities are dimensionless and the investigation is undertaken in a coordi- 
nate system moving at the mean velocity. Since the fundamental aspects of the method used 
below [7] do not depend on the form of the prismatic-channel cross section and the results 
obtained are analogous, but more unwieldy, analysis is restricted here to dispersion in a 
plane channel, the velocity profile in which is described by the usual Poiseuille parabola 
v(Y) = u(l - Y2/h2). Taking the Poiseuille velocity profile, the material being transferred 
is assumed to be dynamically passive, exerting no influence on the liquid flow, which is 
characteristic of homogeneous mixtures. 

In Eq. (i), the term a(Lac/ax)/ax is neglected in comparison with a(Lac/ay)ay, which is 
valid if the channel is sufficiently extended. The dimensionless parameters in this equation 
are related to dimensional parameters as follows: x = X/s y = Y/h, t = Th2u2/(D,s g = 
uh2/(s where D, is the characteristic value of the diffusion coefficients; T, X, Y, are 
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the dimensional time and coordinates; s is the length scale along the channel, which is deter- 
mined from the character of the variation in the vector of the specified initial concentration 
along the x axis 

C[t=o=C,(x,  9), xE(--oo, -l-Q). (2) 

The matrix L has components Lij which are symmetric LLj =.Lji and positive-definite, as re- 
quired by the Onsager reciprocity relations and the prlnclple of increasing entropy [9]. In 
addition, Lij are assumed to depend on the components c i of column matrix C, one component 

of which (where necessary) may be regarded as the temperature. This means that both the 
initial system in Eq. (I) and the simplified systems found below are nonlinear. 

To Eq. (i) are added the boundary conditions 

OC 
L - -  0 when y = --+-_ 1, 

09 

(3) 

which are adequate for the present purposes. These conditions (n of them with respect to the 
number of components) express the absence of a mass flux through the channel boundary. 

The solution of Eq. (i) is sought using the perturbaticn method [ii, 12], in the form of 
a series in powers of the small parameter e. This procedure is essentially equivalent to the 
method of successive approximation [i], but it does not include semintuitive steps [i] and 
is not only better suited to finding corrections but also clearer. Substituting the series 

C = Co + eC~ + e=C~. + . . .  (4 )  

into Eq. (i) and grouping terms of the same order in ~, the following equations are obtained 

o [L(co)aCe ] oy -5-y--y j = o, ( 5 )  

a L (Co) + L' (Co) ] _ aCo 
Oy " Ox ' 

Oy " oy , 
L" (Co) 21 OC~ l 

2 C,] Oy I + o--T- (7) 

and so on. The boundary conditions are written in the form 

L(Co) OCo = O, L (Co) OCt aCe O, Oy + L'(Co)C, o--U= 

L(Co) aC~ _I_L,(Cd)CI~_~_I_fL,(Co)C~@___ L"(Co)C~ I OC o 
' " 2 Oy 

when Y U -+" 1. 

- - = 0  

(8) 

Here the derivative of the matrix L is combined with the vectors C i as a tensor with the 
components Lij k 8Lij/~Ck. For the sake of brevity, the dependence of L on C o is omitted 
below. 

Integrating Eq. (5) once, and taking account of the corresponding condition in Eq. (8), 
it is found that LaC0/~y = 0; hence, in view of the nondegeneracy of the matrix L, it follows 
that 8C0/8y = 0, and this leads to the conclusion that Co depends only on x and t, i.e., 
C0 = G(x, t). The same procedure applied to Eq. (6), taking account of the data obtained on 
Co, gives 

C I = L - 1 0 G  ( y2 Y~ ) 
ax 6 12 + f (x, t), (9)  

where the column matrices G and F have yet to be determined. To obtain the equation satis- 
fied by the matrix function G it is sufficient to integrate Eq. (7) with respect to y over 
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the limits (-i, i). Then, using the corresponding relation of Eq. (8), it is found that 

OG =--8 __0 (L_~ OG ), (i0) 

Ot 945 Ox , Ox 

which is the desired dispersion equation, known previously only for the case L = const. Note 
that, in view of the properties of matrix L (that it is symmetric and positive-definite), the 
inverse matrix L -I will have precisely the same properties, i.e., the system in Eq. (i0) 
satisfies the same principles of nonequilibrium 
is significantly simpler. 

Continuing the given procedure, an equation 

OF 8 0 / i _  1 .OF 
Ot 945 Ox] ~ Ox + - -  

thermodynamics as the initial Eq. (i), but 

for F is obtained after certain computations 

8 0 (L_:L,FL_ ~ OG ) = 
945 Ox . Ox 

5580 Ox \ at 180 at Ox 93555 O~- L [ oX : " (Ii) 

Thus, Eqs. (i0) and (ii) are obtained for the vector functions of the first two approxi- 
mations C o and C I. As is evident from Eqs. (5)-(7), the desired functions do not contain 
derivatives with respect to the time. This indicates that the initial problem is singularly 
perturbed [ii, 12], and "internal" coordinates must be introduced for its detailed descrip- 
tion. In this case, it is assumed that T = t/e 2 is the internal time. Finding the solution 
of the internal problem, as before, in the form of a solution analogous to Eq. (4), the equa- 
tion for the zero-approximation function is obtained 

where an asterisk denotes terms of the internal expansion. The basic problem is now to obtain 
the initial conditions for the equations of the external problem - Eqs. (i0) and (ii)~ As 
will be evident from what follows, there is no need to solve Eq. (12) with the condition in 
Eq. (2) in order to find G(x, 0). In the linear case L = const, it is also simple to find the 
initial condition for the vector function F; in the nonlinear case L = L(C~), the condition 
for F is expressed in terms of the vector C~, which must be found from Eq. (12). 

Writing Eq. (i) in the internal variables T = t/e 2, x, y and integrating it with respect 
to y over the ilmits (-I, I), the following relation is obtained in the zero approximation 
with respect to e 

i i ! 0 c dy = o .[c:ey = ] c ,  ( 13 ) 
OT 

--I --i ~I 

and hence, after passing to the limit T e ~, using the principle of matching in the limit [ii, 
12] 

limC~ = limCo (14) 
T ~  t~O 

the desired initial condition is determined 

1 .iC* (x, &,)dy, (15) ~(x, o) = -T-  
--1 

as could have been predicted on the basis of intuitive considerations. To obtain the condi- 
tions for Eq. (ii), a relation of the order of E following from Eq. (i) is written 

0 (16) 
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After some manipulations, it may 

1 a a 
OT _, Ox 

Assuming L = const, it is simple 
when T = 0) 

I 

dy + 
- - 2  

be reduced to the form 

I ' - -  I oc: I oc: 

to  i n t e g r a t e  Eq. (17) over  t ime ,  wi th  t he  r e s u l t  (C~ = 0 

Ox [ 6 _, 2 , 

Since the "deformation" t = Te 2 of the time includes the factor e2, the matching principle 
in Eq. (14) may also be applied to C~ and CI. Hence, using Eq. (9), the desired initial 
condition for F is found 

F(x, O) L -~ 0 i (  Y~ 7 ) (19) 
= - -  y ~  C,  (x, 9) d y .  

12 Ox -1 2 I5 

In the general case, with a dependence of L on C, the following equation for the vector func- 
tion F may be proposed 

F(x' O) 1 0 i (  + ) i 7 L-I'OG(x, O) (20) . . . . .  f ciy [O(x, O)--C~]ctT - - - - .  
2 Ox -2 180 Ox 

where an integral characteristic of the solution of the problem in Eqs. (12), (2), and (3) is 
required to calculate F(x, 0). 

In describing dispersional phenomena, the behavior of the concentration of the materials 
at sufficiently large times is basically of interest, i.e., the external solution in the given 
formulation. It is precisely at large times that the dispersion equation is applicable, as 
proven repeatedly in the literature, both by various estimates [2, 3, 6] and by asymptotic 
analysis of the accurate solution for the problem of the propagation of material in a circular 
tube [13]. Nevertheless, it has been estabished [6, 14] that, when chemical reactions occur 
in the flow, the solution of the dispersion equations may give significant deviations from 
the solutions obtained on the basis of the complete equations. To "expand" the applicabiity 
of dispersion theory, equations of hyperbolic type which depend (within known limits) on 
their method of derivation are proposed [5, 6]. Consideration of specific examples shows the 
adequacy of equations of hyperbolic type, and the closeness of their solutions at large 
times to the solutions of the diffusional model of the type in Eq. (i0) in those cases where 
there are no chemical reactions of great intensity. On the basis of the equations obtained 
for the two approximations in Eqs. (i0) and (ii), an equation for the mean concentration may 
be formulated, with an accuracy up to terms of order e. This will be done here only in the 
linear case L = const. 

Integrating Eq. (4) with respect to y over the l-i.mits (-I, i) and taking account of Eq. 
(9), the following expression is obtained for the mean concentration 

,, Cdy = O + ~ F + 180 dx <C>= 2 " 
--I 

with an accuracy to terms of order e; hence, combining the equations for G and F, the desired 
equation for the mean concentration over the cross section <C> is obtained 

784 02<C) ] (22) O<C) _L_ I 8 a2<C>__ _ p e _ _ _ _  
J Ot 945 Ox 2 1395 OxO~ 

With an accuracy up to terms of order e, this equation may be given the form of a linearized 
Korteweg-de Vries--Burgers matrix equation [15], on the basis that in terms of order g it is 
correct to replace <C> by G and conversely. Using Eq. (I0), the desired equation is obtained 
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" - -  [ - -  784L-'0s<C> 1 O<C> 8 t -~ O2<C> + 8  
0---7- 9 4 ~  ax 2 1395 Ox 3 (2  3 ) 

resembling in structure a segment of the expansion of the general dispersion equation of [3]. 
Remember that the dispersion Eqs. (i0), (ii), (22), and (23) obtained are written in a moving 
coordinate system. The system in Eq. (22) has two characteristics 

31 (24) x = c o n s t ,  ex --t=const, 
2058 

defined in the moving coordinate system for all components <ci>; this corresponds to a 
hyperbolic system when n = i. When n > i, the behavior of Eq. (22) is similar to hyperbolic 
according to the classication of [15]. 

Note, in conclusion, that if diffusional transport in the x direction is taken into 
account as well as the dispersion coefficient 8L-Z/945, as was done in [2, 4], the following 
formula is obtained 

Do -- 8"~-lh2u~ F,~, ~= D,L ,  ( 2 5 ) '  
945 

this expression generalizing the Aris formula [2] in the "plane" variant to the multicomponent 
case, is written in terms of dimensional parameters. 

NOTATION 

C, column matrix of the concentration of the components; h, halfwidth of the channel; 
G(x, t), vector function of first approximation with respect to ~; F(x, t), basic unknown 
term in the vector function of the second approximation of C with respect to e; L, matrix of 
kinetic coefficients; u, maximum liquid velocity in channel; e, small parameter; < >, symbol 
of averaging. 
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